Regla y compás
La construcción con regla y compás es el trazado de puntos, segmentos de recta y ángulos usando exclusivamente una regla y compás idealizados. La geometría clásica griega impuso esa norma para las construcciones, aunque los griegos también investigaron las que pueden obtenerse con instrumentos menos básicos.
A la regla se le supone longitud infinita, carencia de marcas que permitan medir o trasladar distancias, y un solo borde. Del compás se supone que se cierra súbitamente cuando se separa del papel, de manera que no puede utilizarse directamente para trasladar distancias, porque «olvida» la separación de sus puntas en cuanto termina de trazar la circunferencia. Esta restricción del compás parece muy incómoda para los usuarios de compases reales, pero carece por otro lado de importancia matemática, porque el traslado de distancias se puede realizar de forma indirecta.
Cualquier punto que sea obtenible usando regla y compás puede conseguirse también usando únicamente compás. Como se verá, algunos problemas de geometría plana clásica imponen la restricción de «solo compás».[cita requerida]
Los problemas más famosos que se propusieron para su resolución «con regla y compás» son la proverbial cuadratura del círculo, la duplicación del cubo y la trisección del ángulo, a los que a veces se añade la construcción del heptágono regular, el primero de los infinitos polígonos regulares imposibles de trazar mediante regla y compás. Tienen en común ser de resolución imposible: está matemáticamente demostrado que no se puede cuadrar el círculo, ni duplicar el cubo, ni trisecar el ángulo, ni trazar un heptágono regular usando exclusivamente la regla y el compás idealizados de la geometría griega.
Pese a esa «imposibilidad lógica» insalvable, muchos persisten en el intento de resolver estos famosos problemas.[1] Quizás, porque no aciertan a explicarse la imposibilidad, dado que son resolubles si se permiten transformaciones geométricas que no pueden realizarse con regla y compás «euclídeos». Duplicar el cubo es posible utilizando algunas construcciones geométricas que sólo requieren un poco más que la regla y el compás clásicos.
Índice
1 La regla y el compás de la geometría clásica
2 Las construcciones básicas
3 Puntos y longitudes construibles
4 Ángulos construibles
5 Construcciones con regla y compás como operaciones de aritmética compleja
6 Construcciones imposibles
6.1 Cuadratura del círculo
6.2 Duplicación del cubo
6.3 Trisección del ángulo
7 Construcción de polígonos regulares
8 Construcciones solo con regla o solo con compás
9 Construcciones extendidas
9.1 Reglas marcables
9.2 Origami
9.3 El cuerpo extendido
10 Investigaciones recientes
11 Véase también
12 Referencias
13 Enlaces externos
La regla y el compás de la geometría clásica
La regla y el compás de las construcciones geométricas son idealizaciones de las reglas y compases del mundo real. Son conceptos matemáticos abstractos, como pueda serlo la raíz cuadrada, y no instrumentos físicos.
- El compás puede trazar circunferencias de cualquier radio dado, pero a diferencia de la mayoría de compases reales, no tiene ninguna marca que permita repetir una abertura predeterminada. Sólo puede abrirse entre puntos que hayan sido previamente construidos, así que en realidad su única función es trazar una circunferencia, o parte de ella, con un centro predeterminado y un radio también determinado por un punto prefijado. Además, se trata de un compás "idealizado", que en cuanto deja de tocar el papel se cierra, perdiendo todo recuerdo del radio de la circunferencia que acaba de trazar.
- La regla es «infinitamente larga» (es decir, puede prolongar una recta tanto como se quiera), carece de marcas que permitan medir con ella, y sólo tiene un borde, cosa insólita en las reglas mundanas (si tuviera, por ejemplo, dos bordes, permitiría trazar rectas paralelas). Puede usarse sólo con un fin modesto: trazar una recta entre dos puntos que ya existan en el papel, o bien prolongar (tanto como se desee, eso sí) una de esas rectas.
Por supuesto, la regla y compás ideales deben usarse para hacer construcciones ideales. Los dibujos del mundo real tienen imperfecciones: los puntos son en realidad manchas tridimensionales, los segmentos de recta son en realidad cuasi-paralelepípedos o «franjas» algo irregulares de cierta anchura y altura, etc. Estas manchas proyectan sombras cuando son iluminadas por lámparas especiales de luz rasante, que se utilizan profesionalmente para el estudio de las falsificaciones, pues permiten distinguir si un trazo está por encima de otro observando las sombras. Pero las construcciones con regla y compás de la geometría clásica se hacen en la mente, más que en el papel, y son tan idealmente precisas como el álgebra.
Puestas así las cosas, parecería que las construcciones con regla y compás son un simple «juego», más que una disciplina científica seria. Buscar la solución a cualquier construcción particular es un pasatiempo interesante, pero el verdadero interés científico, que estuvo abierto durante más de dos mil años hasta ser resuelto en el siglo XIX, coincidiendo con la demostración de los teoremas fundamentales sobre ecuaciones polinómicas, con la comprensión profunda de los números irracionales y trascendentes y con la aparición del álgebra abstracta, está en los problemas que desbordan los límites de lo factible con regla y compás. Lo interesante es lo que no se puede hacer con regla y compás.
Los tres problemas insolubles clásicos de construcción con regla y compás son:
Cuadratura del círculo: Se trata de dibujar un cuadrado que tenga la misma superficie que un círculo dado. Se aporta como dato de partida el círculo a cuadrar (su centro y uno de los puntos de su circunferencia), y se considera resuelto el problema cuando consigue trazarse el segmento de recta que es un lado del cuadrado que iguala el área de dicho círculo.
Duplicación del cubo: Ha de dibujarse el lado de un cubo cuyo volumen duplique al de otro cubo del que se da el lado como dato de partida.
Trisección del ángulo: Debe dividirse un ángulo dado en tres ángulos más pequeños, los tres del mismo tamaño, cuya suma sea igual al ángulo dado. Se aporta como dato el ángulo a trisecar (las dos rectas que lo forman, o puntos que permitan trazarlas) y se consideraría resuelto el problema cuando se traza un ángulo cuya apertura es un tercio de la del ángulo dado.
Estos problemas resistieron durante 2000 años los incontables intentos de encontrar construcciones que los resolvieran con regla y compás, de acuerdo con las normas antes indicadas. A mediados del siglo XIX se demostró matemáticamente que es imposible hacerlo.
Los tres problemas clásicos no son los únicos cuya solución se ha demostrado imposible. La construcción de determinados (infinitos) polígonos regulares, como por ejemplo el heptágono (polígono regular de 7 lados) o el endecágono (polígono regular de 11 lados) también es imposible con regla y compás.
Las construcciones básicas
Todas las construcciones con regla y compás son aplicaciones sucesivas de cinco construcciones básicas, usando en cada una los puntos, rectas y círculos que se hayan creado en fases anteriores. Esas cinco únicas construcciones posibles son:
- Crear el segmento de recta que une dos puntos preexistentes (en realidad, la recta: recuérdese que la regla es de longitud infinita).
- Crear el círculo con centro en un punto dado y cuya circunferencia toca otro punto dado
- Crear el punto en el que se intersecan dos rectas no paralelas.
- Crear el punto, o la pareja de puntos, en los que se intersecan (si lo hacen) una línea y una circunferencia.
- Crear el punto, o la pareja de puntos, en los que se intersecan (si lo hacen) dos circunferencias.
Por ejemplo, partiendo de dos puntos dados, se puede crear una recta, o bien se pueden crear dos círculos (cada punto hace de centro de un círculo y de extremo de otro). Si optamos por los dos círculos, su intersección dará lugar a dos nuevos puntos. Si trazamos segmentos de recta entre los puntos originales y uno de los nuevos puntos, habremos construido un triángulo equilátero. Así pues, el problema: "construir un triángulo equilátero dado uno de sus lados (o los puntos extremos de uno de sus lados) es trivialmente resoluble con regla y compás.
Puntos y longitudes construibles
Hay muchas formas distintas de demostrar que algo es imposible. La estrategia que se seguirá en este artículo para presentar un esquema informal de las demostraciones de imposibilidad de los problemas clásicos es la de determinar en primer lugar los límites de la regla y el compás —lo que se puede hacer y lo que no se puede hacer con ellos—, y mostrar seguidamente que para resolver los problemas deberían superarse tales límites.
Usando regla y compás se pueden definir coordenadas en el plano. Se parte de dos puntos que han de considerarse «dados», y se traza la recta que pasa por ambos. Se llama al resultado «eje X{displaystyle X}», y se define la longitud entre los dos puntos dados como unidad de longitud.
Por tanto, tener dos puntos como datos de partida es equivalente a tener un eje de coordenadas y una unidad de longitud.
Ahora bien: una de las construcciones más sencillas con regla y compás es la de trazar una recta perpendicular a otra dada, así que se hace precisamente eso, con lo que se obtiene un «eje Y{displaystyle Y}».
Así pues, tener dos puntos como datos es equivalente a tener un sistema de coordenadas cartesianas, con ejes X{displaystyle X} e Y{displaystyle Y}, y con unidad de distancia.
Por otro lado, un punto (x,y){displaystyle (x,y)} en el plano euclídeo puede identificarse con el número complejo x+yi{displaystyle x+yi}. En la construcción con regla y compás, se empieza con un segmento de recta de longitud unitaria. Si se es capaz de construir un punto dado, un punto cualquiera, en el plano complejo, entonces se podrá decir que ese punto es un número complejo construible.
Por ejemplo, si se dan dos puntos como datos, los números complejos 1{displaystyle 1}, −1{displaystyle -1}, 1+i{displaystyle 1+i}, 1−i{displaystyle 1-i}, etc. son fácilmente construibles.
De hecho, con construcciones conocidas de la geometría euclidiana se pueden construir los números complejos de la forma x + yi siempre que x e y sean números racionales. De modo más general, usando las mismas construcciones, uno puede, dados dos números complejos a y b, construir a + b, a − b, a × b, y a/b.
Esto muestra que los números construibles forman un cuerpo, que por tanto es un subcuerpo de los números complejos. Puede demostrarse algo más: dada una longitud construible es posible construir su conjugado y su raíz cuadrada.
Como se ha visto, las únicas formas de construir puntos nuevos es como intersección de dos rectas, o de una recta y una circunferencia, o de dos circunferencias. Usando las ecuaciones de las rectas y de las circunferencias, puede demostrarse que los puntos en los que se intersecan yacen en una extensión cuadrática del cuerpo más pequeño, F, que contenga dos puntos en la recta, el centro del círculo, y el radio del círculo. Es decir, que los puntos con intersección son de la forma x+yk{displaystyle x+y{sqrt {k}}}, donde x{displaystyle x}, y{displaystyle y} y k{displaystyle k} están en F.
Dado que el cuerpo de los puntos construibles es cerrado para las raíces cuadradas, contiene a todos los puntos que puedan obtenerse por una secuencia finita de extensiones cuadráticas con coeficientes racionales del cuerpo de los números complejos. Por lo dicho en el párrafo anterior, se puede demostrar que todo punto construible puede obtenerse por una tal secuencia de extensiones. Como corolario, se encuentra que el grado del polinomio mínimo para un número construible (y por tanto para cualquier longitud construible) es una potencia de 2. En particular cualquier punto o longitud construible es un número algebraico, sin embargo no cualquier número algebraico puede ser construido.
Ángulos construibles
Hay una biyección entre los ángulos construibles y los puntos que son construibles en cualquier circunferencia construible. Los ángulos construibles forman un grupo abeliano bajo la suma-módulo 2π{displaystyle 2pi ;} (que se corresponde con la multiplicación de los puntos sobre la circunferencia unitaria, considerados como números complejos). Los ángulos construibles son exactamente aquellos cuya tangente (o equivalentemente, su seno o su coseno) es un número construible. Por ejemplo, el heptadecágono regular (polígono de 17 lados iguales) es construible porque:
cos(2π17)=−116+11617+11634−217+1817+317−34−217−234+217{displaystyle cos {left({frac {2pi }{17}}right)}=-{frac {1}{16}};+;{frac {1}{16}}{sqrt {17}};+;{frac {1}{16}}{sqrt {34-2{sqrt {17}}}};+;{frac {1}{8}}{sqrt {17+3{sqrt {17}}-{sqrt {34-2{sqrt {17}}}}-2{sqrt {34+2{sqrt {17}}}}}}},
como descubrió Gauss.[2]
El grupo de los ángulos construibles es cerrado bajo la operación que biseca los ángulos (que se corresponde con la obtención de raíces cuadradas). Los únicos ángulos de orden finito que pueden construirse empezando con dos puntos son aquellos cuyo orden es el producto de una potencia de 2 por un elemento de un conjunto de diversos números primos de Fermat. Además, hay un conjunto denso de ángulos construibles de orden infinito.
Construcciones con regla y compás como operaciones de aritmética compleja
Dado un conjunto de puntos en el plano euclídeo, basta seleccionar cualquiera de ellos para llamarlo 0 y cualquier otro para llamarlo 1, y elegir arbitrariamente una orientación, para poder considerar los puntos como un conjunto de números complejos.
Dada cualquiera de tales interpretaciones de un conjunto de puntos como números complejos, los puntos construibles utilizando construcciones válidas con regla y compás son precisamente los elementos del mínimo cuerpo que contiene al conjunto de puntos original, y que es cerrado con respecto a las operaciones de conjugación de complejos y raíz cuadrada (para evitar ambigüedades, puede limitarse la raíz cuadrada, imponiendo que el argumento complejo sea menor de π{displaystyle pi ;}).
Los elementos de este cuerpo son precisamente aquellos que pueden expresarse como una fórmula en la que intervienen los puntos originales y que sólo incluye las operaciones de suma, resta, multiplicación, división, complejo conjugado y raíz cuadrada. Es fácil demostrar que los elementos así obtenidos son un subconjunto numerable, pero denso, del plano complejo. Cada una de las seis operaciones citadas se corresponde con una construcción simple con regla y compás. Por tanto, de la fórmula que define un número puede extraerse directamente la secuencia de construcciones simples con regla y compás que hay que realizar para construir el punto reflejado por la fórmula.
En suma: si se aporta un conjunto de puntos (números complejos) como datos iniciales, y se pide la construcción de otro número complejo, que depende de los datos a través de una fórmula que sólo contiene sumas, restas, multiplicaciones, divisiones, conjugación de complejos y raíces cuadradas, ese número "objetivo" es siempre construible en un número finito de pasos (de las construcciones básicas que se han descrito arriba), pasos que además se deducen automáticamente de la fórmula, aunque en muchos casos pueden encontrarse construcciones alternativas más eficientes, atajos de menos pasos.
Hay una alternativa que evita la elección arbitraria de dos puntos para que hagan de 0 y de 1. Dada una orientación arbitrariamente elegida, un conjunto de puntos determina un conjunto de ratios complejas dadas por la razón entre las diferencias de cualesquiera dos pares de puntos. El conjunto de ratios de ese tipo construible usando regla y compás a partir de tal conjunto inicial de ratios es precisamente el cuerpo más pequeño de los que contienen los ratios originales, y es cerrado para la conjugación compleja y la raíz cuadrada.
Por ejemplo, la parte real, imaginaria, y el módulo de un punto o ratio z{displaystyle z;} (eligiendo uno de los dos puntos de vista antes descritos, el de asignar arbitrariamente puntos 0 y 1 o el de trabajar con ratios) son construibles, dado que pueden expresarse como:
- ℜ(z)=z+z¯2{displaystyle Re (z)={frac {z+{bar {z}}}{2}};}
- ℑ(z)=z−z¯2{displaystyle Im (z)={frac {z-{bar {z}}}{2}};}
- |z|=zz¯{displaystyle left|zright|={sqrt {z{bar {z}}}};}
La duplicación del cubo y la trisección del ángulo requieren ratios que son solución de ecuaciones cúbicas, en tanto que la cuadratura del círculo requiere un ratio trascendente. Ninguno de esos casos forma parte de los cuerpos antes descritos, y por tanto no existe construcción con regla y compás para estos problemas. Una excepción, en el caso de la trisección del ángulo, se da con ángulos especiales como cualquier ϕ{displaystyle phi ;} tal que ϕ6π{displaystyle {frac {phi }{6pi }};} sea un número racional que tenga como denominador el producto de una potencia de dos y de distintos números primos de Fermat.
Construcciones imposibles
Cuadratura del círculo
El más famoso de los problemas griegos, la cuadratura del círculo plantea la construcción de un cuadrado cuya superficie sea la misma que la de un círculo dado; y, por supuesto, resuelto con regla y compás.
Se ha demostrado que cuadrar el círculo de esta forma es imposible, dado que implica encontrar un número trascendente, a saber 1π{displaystyle 1 over {sqrt {pi }}}. Usando regla y compás sólo es posible generar números algebraicos. La frase "cuadratura del círculo" o "cuadrar el círculo" se usa frecuentemente con el sentido de "hacer algo imposible". Con gran fortuna, puesto que es tan imposible como obtener algo distinto de cuatro sumando dos más dos, o dibujar en el plano euclídeo un triángulo que tenga los tres ángulos obtusos.
Sin embargo, si no se exige resolver el problema con sólo regla y compás, resulta sencillo hacerlo con una amplia variedad de métodos geométricos y algebraicos. El problema fue resuelto de esta forma muchas veces, ya en la antigüedad.
Duplicación del cubo
Duplicar el cubo consiste en construir el lado de un cubo que tenga el doble de volumen que otro cubo cuyo lado se da como dato del problema. Por supuesto, debe hacerse con regla y compás. Es imposible, porque la raíz cúbica de 2, pese a ser un número algebraico, no puede obtenerse de los números enteros por suma, resta, multiplicación, división y extracción de raíces cuadradas, que son las únicas operaciones que pueden hacerse con regla y compás. Esto es así porque el polinomio mínimo de la raíz cúbica de 2 sobre los racionales tiene grado 3. Basta con que se permita utilizar una regla con dos marcas y un compás para que sea posible duplicar el cubo.
Trisección del ángulo
Partiendo de un ángulo dado, trisecarlo significa construir un ángulo que mida justo un tercio del ángulo dado. Se demuestra que ello requiere obtener la raíz cúbica de un número complejo cualquiera, con valor absoluto 1. Resulta imposible hacerlo sólo con regla y compás.
Se puede esbozar una demostración más completa para el caso de que el ángulo sea de 60°. Si fuera trisecable, entonces el polinomio mínimo de cos 20° tendría que ser de un grado potencia de dos (2,4,8,...). Esto es así porque, como se ha visto antes, construir un ángulo equivale a construir un punto en la circunferencia que subtienda ese ángulo, por lo que tangente, seno y coseno del ángulo deberían ser números construibles, y ya se ha visto que sólo los que resultan de polinomios de grado potencia de 2 son construibles.
Usando la identidad trigonométrica
- cos(3α) = 4cos³(α) − 3cos(α),
se obtiene, haciendo cos 20° = y,
- 8y³ − 6y − 1 = 0,
de modo que, con el cambio de variable, x = 2y,
x³ − 3x − 1 = 0.
Si ese polinomio pudiera reducirse a grado 2, tendría una raíz racional, que por el teorema de la raíz racional, debería ser 1 o −1, que evidentemente no son raíces. Por lo tanto, el polinomio mínimo para cos 20° es de grado 3, de modo que cos 20° no es construible y por tanto el ángulo de 60° no puede ser trisecado.
La trisección del ángulo, como muchas otras construcciones imposibles con regla y compás, puede llevarse a cabo fácilmente con el sistema más potente, aunque físicamente sea muy sencillo, de papeles doblados denominado origami. Los axiomas de Huzita (tipos de operaciones de doblado) permiten construir extensiones cúbicas (raíces cúbicas) de longitudes dadas, en tanto que con regla y compás sólo pueden construirse extensiones cuadráticas (raíces cuadradas). Ver matemáticas de la papiroflexia
Construcción de polígonos regulares
Algunos polígonos regulares (un ejemplo es el pentágono) son fácilmente construibles con regla y compás; otros no. Esto nos lleva a la pregunta: ¿es posible construir cualquier polígono regular con regla y compás?
El primer avance relevante para resolver este problema se debe a Gauss, que mostró en 1801 que un polígono regular de n lados puede construirse con regla y compás siempre que los factores primos impares de n sean primos de Fermat distintos. Gauss conjeturó que esta condición debía ser también necesaria, pero no aportó una demostración de este hecho, que fue lograda por Pierre Wantzel en 1837.
Construcciones solo con regla o solo con compás
Es posible, de acuerdo con el teorema de Mohr-Mascheroni, obtener sólo con compás cualquier construcción que pueda hacerse con regla y compás (excepto el hecho de trazar una recta). Es imposible obtener una raíz cuadrada sólo con regla, de modo que muchas construcciones factibles con compás no lo son con regla. Pero el teorema de Poncelet-Steiner demuestra que basta con disponer previamente de un único círculo y su punto central para que todo lo construible con compás lo sea también sólo con regla (y el círculo y su centro previamente trazados).
Construcciones extendidas
Reglas marcables
Arquímedes y Apolonio de Pérgamo realizaron construcciones con «regla marcable», una regla en la que se puedan dibujar rayas para guardar memoria exacta de distancias. Esto les permitía, por ejemplo, partir de un segmento de recta, dos rectas (o círculos) y un punto, y trazar una nueva recta que pasara por el punto dado y se intersecara con las dos rectas iniciales, de modo que la distancia entre los puntos de intersección igualara la longitud del segmento dado. Esta construcción, llamada neusis (inclinación, tendencia), crea un segmento de recta de tamaño prefijado, que cumple la condición de tocar en sus extremos las dos rectas dadas, y además pasa por el punto dado, al que suele llamarse «polo».
Esto extendió la geometría más allá de los Elementos de Euclides. Euclides no tenía ningún axioma, ni podía demostrar ningún teorema, que mostrara siquiera la existencia de la neusis, de modo que no podía usarla en las construcciones. En esta geometría expandida, cualquier distancia cuya razón a una distancia dada sea la solución de una ecuación cúbica o cuártica es construíble. De manera que si se permite usar reglas marcables, y como consecuencia se permite la neusis, la trisección del ángulo[3] y la duplicación del cubo pueden conseguirse. La cuadratura del círculo, en cambio, sigue siendo imposible. Algunos polígonos regulares no construibles con regla y compás clásicos, como el heptágono, lo son con regla marcable.[4] Con neusis y todo, sin embargo, sigue siendo imposible construir muchos (de hecho, infinitos) polígonos regulares, empezando por el de once lados (endecágono).
Origami
De modo similar, la teoría matemática del origami, o papiroflexia sin ningún instrumento, sólo hojas de papel, resulta más potente que la regla y compás clásicos. Igual que la regla marcable, el origami permite resolver ecuaciones cúbicas, lo que a su vez abre la resolución de cuárticas, la duplicación del cubo y la trisección del ángulo. Se ha demostrado que los puntos construibles por papiroflexia son exactamente los mismos que con regla marcable y compás; en particular, tampoco el origami permite resolver la cuadratura del círculo. Se pueden hacer también figuras de diversos modelos con el origami o papiroflexia tan solo con una hoja de papel.
El cuerpo extendido
En términos abstractos, el uso de estas herramientas más potentes, ya sea la neusis de la regla marcable o el origami o papiroflexia, extienden el cuerpo de los números construíbles a un subcuerpo más amplio de los números complejos, que no sólo contiene la raíz cuadrada, sino también la raíz cúbica de cualquier elemento (Como siempre, podemos evitar la ambigüedad sobre de qué raíz cúbica estamos hablando quedándonos sólo con los argumentos complejos menores que 2π3{displaystyle {frac {2pi }{3}}}, para que haya una sola). Las fórmulas aritméticas de los puntos construíbles que hemos descrito más arriba tienen sus análogas en este cuerpo extendido, permitiendo ahora fórmulas que incluyen también raíces cúbicas.
Investigaciones recientes
Simon Plouffe ha escrito un artículo en el que muestra cómo la regla y el compás pueden usarse como una sencilla computadora, dotada de insospechada potencia de cálculo.[5]
Véase también
- historia de la geometría
- inversión en el plano
- las matemáticas del origami
- número trascendente
- politopo regular (construcción de polígonos y poliedros)
- el problema de Apolonio
- proporción áurea
Referencias
↑ El matemático Underwood Dudley ha trabajado en la recopilación de falsas demostraciones "con regla y compás", así como de otras excentricidades matemáticas, que ha compilado en varios libros.
↑ Weisstein, Eric W. «coseno de pi/17». En Weisstein, Eric W. MathWorld (en inglés). Wolfram Research.
↑ ver * Bogomolny, Alexander. «Archimedes' trisection». Interactive Mathematics Miscellany and Puzzles (en inglés).
↑ John H. Conway ha aportado construcciones de algunos. Conway, John H. and Richard Guy: The Book of Numbers.
↑ Plouffe, Simon. "The Computation of Certain Numbers Using a Ruler and Compass." Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.3.
Enlaces externos
A Metafísica Platônica e a Duplicação do Cubo (en portugués)- Online ruler-and-compass construction tool
- Squaring the circle
- Impossibility of squaring the circle
- Doubling the cube
- Angle trisection
- Trisection of an Angle
- Regular polygon constructions
- Simon Plouffe's use of ruler and compass as a computer
- Why Gauss could not have proved necessity of constructible regular polygons
Bogomolny, Alexander. «Angle Trisection by Hippocrates». Interactive Mathematics Miscellany and Puzzles (en inglés).
Bogomolny, Alexander. «Geometric Construction with the Compass Alone». Interactive Mathematics Miscellany and Puzzles (en inglés).
Archimedes' neusis construction by Antonio Gutiérrez from Geometry Step by Step from the Land of the Incas.
Weisstein, Eric W. «Angle Trisection». En Weisstein, Eric W. MathWorld (en inglés). Wolfram Research.
Various constructions using compass and straightedge With interactive animated step-by-step instructions
Euclidea Online compass and straightedge construction game