Mleko






Szklanka mleka krowiego


Mleko – wydzielina gruczołu mlekowego samic ssaków, pojawiająca się w okresie laktacji. Jako produkt żywnościowy dla człowieka najczęstsze zastosowanie ma mleko krowie.


Mleko jest mieszaniną wieloskładnikową, składająca się z trzech podstawowych faz, będących w ścisłej zależności od siebie:



  • emulsyjnej

  • koloidalnej

  • molekularnej.


Mlekiem potocznie nazywa się również produkty wegańskie, niepochodzące od zwierząt, na przykład sojowe, ryżowe, kauczukowe[potrzebny przypis].




Spis treści






  • 1 Główne fizyczne i fizykochemiczne cechy mleka


  • 2 Rola i znaczenie biologiczne mleka


  • 3 Skład chemiczny mleka krowiego


    • 3.1 Cukry


    • 3.2 Tłuszcz mleczny


    • 3.3 Substancje mineralne


    • 3.4 Witaminy


    • 3.5 Porównanie mleka kobiecego i nieprzetworzonego mleka krowiego




  • 4 Skażenia mikrobiologiczne mleka


  • 5 Naturalne składniki mleka jako czynniki chorobotwórcze


  • 6 Enzymy rodzime mleka


  • 7 Mleko w tradycji i kulturze


  • 8 Wykorzystanie mleka zwierząt domowych przez ludzi


  • 9 Odniesienia historyczne


  • 10 Lista największych producentów mleka krowiego


  • 11 Lista największych konsumentów mleka krowiego i produktów mlecznych[7]


  • 12 Regulacje


  • 13 Przypisy


  • 14 Zobacz też


  • 15 Przypisy


  • 16 Linki zewnętrzne





Główne fizyczne i fizykochemiczne cechy mleka |




  • Gęstość mleka. Gęstość mleka krowiego zawiera się w przedziale 1,029-1,033 g/cm³. Wymagania weterynaryjne w Polsce mówią, że nie może spaść poniżej 1,028 g/cm³ w temperaturze 20 °C.


  • Lepkość mleka. Uzależniona jest od zawartości suchej masy (głównie kazeiny i tłuszczu) oraz temperatury mleka. W temperaturze 0 °C lepkość mleka jest czterokrotnie, a w temperaturze 15 °C, dwukrotnie większa od lepkości wody. Lepkość mleka oznaczamy w jednostkach względnych w stosunku do wody.


  • Kwasowość mleka. Kwasowość mleko zawdzięcza obecności soli kwaśnych, kazeiny, kwasów nieorganicznych oraz organicznych. Świeże mleko ma odczyn kwasowy. Kwasowość mleka można wyrazić jako: Kwasowość czynną (rzeczywistą) oraz Kwasowość potencjalną (miareczkową).

  • Napięcie powierzchniowe

  • Współczynnik refrakcji światła

  • Temperatura zamarzania mleka wynosi ok. −0,520 °C

  • Pienienie się

  • Powstawanie kożucha

  • Zdolność podstojowa

  • Krzepnięcie

  • Zmaślanie



Rola i znaczenie biologiczne mleka |


Mleko ludzkie i nieprzetworzone mleko innych ssaków, zawiera przede wszystkim składniki odżywcze niezbędne do prawidłowego rozwoju organizmu w pierwszym okresie życia pozapłodowego.


Poza tym zawiera również wiele innych składników, które spełniają różnorodne ważne funkcje biologiczne[1].


Między innymi są to:



  • ułatwienie przyswajania i trawienia składników odżywczych mleka

  • udział i wpływ na liczne procesy immunologiczne

  • wpływ na prawidłowy rozwój dziecka

  • ochrona przed infekcjami i pomoc w zwalczaniu pojawiających się infekcji

  • udział w procesach dojrzewania przewodu pokarmowego



Skład chemiczny mleka krowiego |


Skład mleka jest uwarunkowany genetycznie. Ilość składników mleka jest uwarunkowana genetycznie oraz środowiskowo (przyjmuje się, że warunki środowiskowe mają 70% znaczenie w ilości składników mleka, natomiast geny - 30%). Z warunków środowiskowych najważniejsze jest żywienie oraz zdrowotność.


Synteza białek mleka, to jest kazeiny, β-laktoglobuliny i α-lakto-albuminy, odbywa się w komórkach wydzielniczych gruczołu mlecznego. Odcinki wydzielnicze to system pęcherzyków i cewek, zbudowany z piramidowych komórek zakończonych mikrokosmkami[2]. Białka tworzone są w 90% z wolnych aminokwasów, a w pozostałej części z peptydów i glukoproteidowych frakcji globularnych, doprowadzanych z krwią do komórek mlekotwórczych. Pozostałe białka: albumina surowicy krwi i immunoglobuliny przenikają do mleka bezpośrednio z krwi. Źródłem aminokwasów potrzebnych do syntezy białek mleka jest dieta; u bydła pochodzą one z paszy oraz z drobnoustrojów obficie rozwijających się w żwaczu, trawione w dalszych odcinkach przewodu pokarmowego.


Do wytworzonych frakcji kazeinowych dołączany jest w aparacie Golgiego fosfor w postaci reszt ortofosforowych. Następnie wiązaniem estrowym zostaje przyłączona seryna, co umożliwia samoistne formowanie się micel kazeinowych z udziałem jonów wapniowych, fosforanowych i cytrynianowych.


Ze wszystkich związków azotowych obecnych w mleku wyróżnia się: związki azotowe niebiałkowe (5%), kazeinę (75-80%), białka serwatkowe (15-20%).



  • Kazeina – to najważniejsze białko mleka. Jej zawartość w mleku krowim wynosi 2,4-2,6%. Skład elementarny kazeiny: węgiel C (53%), wodór H (7%), tlen O (22%), azot N (15,65%), siarka S (0,76%), fosfor P (0,8550%).

Kazeina występuje w mleku w postaci miceli tworzących roztwór koloidalny. Micele mają kształt sferyczny, ich średnica to 50–250 nm. Masa micelarna to 100–150 mln Da. Micele są wyraźnie widoczne pod mikroskopem. Struktura miceli jest porowata, a jej cząstki wypełniają mniej niż połowę objętości. Sprzyja to wiązaniu wody, jonów, laktozy i enzymów. W 1 ml mleka jest 7·1013 miceli, stanowią one łącznie od 5 do 6% objętości mleka. Micele utworzone są z podjednostek frakcji kazeinowych. W mleku krowim 40% kazeiny stanowi frakcja α, 30% frakcja β, a dalsze 15% frakcja κ. W skład każdej miceli wchodzi od 300 do 500 podjednostek. Są połączone jonami wapniowymi, fosforanowymi i cytrynianowymi.



  • Albuminy – są reprezentowane przez alfa-lakto-albuminę, β-lakto-globulinę i albuminę serum, tzw. albuminę surowicy krwi. Białka te w mleku występują w rozproszeniu i są bardzo trudne do wydzielenia w postaci skrzepu. Białka te nie zawierają fosforu, natomiast bogate są w lizynę, a β-lakto-globulina ulega denaturacji podczas silnego ogrzania, co ma niekorzystny wpływ na wydzielanie skrzepu przy pomocy podpuszczki. α-lakto-albumina jest bardziej odporna na wysokie temperatury. Pasteryzacja (80–90 °C) nie powoduje jej koagulacji. W związku z tym zawsze pozostaje ona w serwatce.


  • Globuliny wysokocząsteczkowe (immunoglobuliny). W mleku normalnym jest ich około 0,06%. W dużych ilościach występują w siarze. Obserwuje się je również u krów z zapaleniem wymienia (mastitis). Mleko mastitisowe to mleko od krów z zapaleniem wymienia. Produkowane są przez komórki plazmatyczne występujące w gruczołach mlecznych. Wyróżnia się 3 grupy immunoglobulin:

    • Typ G (IgG) – stanowi 90% całości globulin mleka bydła (u ludzi dominują IgA), o masie cząsteczkowej 150–170 tys.

    • Typ M (IgM) – o masie cząsteczkowej 0,9-1 mln.

    • Typ A (IgA) - o masie cząsteczkowej 300–500 tys.





Cukry |


Laktoza, zwana cukrem mlecznym, jest w całości wytworem gruczołu mlekowego krowy. W 80% powstaje z glukozy, a w 20% z octanów.



  • Laktoza jest najważniejszym węglowodanem mleka. Zawartość w mleku krowim to 4,5-4,8%. Laktoza jest dwucukrem zbudowanym z D-glukozy i D-galaktozy, które są połączone wiązaniem β-glikozydowym pomiędzy 1. węglem galaktozy a 4. węglem glukozy. Galaktoza występuje zawsze w formie β, a glukoza w α lub β. Laktoza należy do cukrów redukujących. Ulega również wielu zmianom pod wpływem bakterii i drożdży. Pierwszym etapem tych przemian jest najczęściej hydroliza przy udziale enzymów laktazy. Powstałe w ten sposób cukry proste: glukoza i galaktoza w warunkach tlenowych utleniają się do CO2 i H2O, natomiast w warunkach beztlenowych ulegają fermentacji: alkoholowej i mlekowej. Laktoza jest odporna na wysokie temperatury, nawet 120 °C. Dopiero w 170 °C traci wodę hydratacyjną i przekształca się w karmel.


Tłuszcz mleczny |


Tworzony jest z glicerolu i kwasów tłuszczowych. Glicerol powstaje w trakcie przemian glukozy, a nasycone kwasy tłuszczowe z fermentacji błonnikowej zachodzącej w żwaczu. Nienasycone kwasy tłuszczowe stanowiące od 3 do 5% tłuszczu dostarczane są z paszą, a następnie rozprowadzane z limfą lub w połączeniach lipoproteinowych z krwią. Część kwasów nienasyconych pochodzących z paszy ulega jednak uwodornieniu (nasyceniu) w żwaczu przez mikroflorę fermentacyjną.


  • Ogólna zawartość tłuszczu mlecznego w mleku to 2,7–5,5%. Blisko 80% masy tłuszczu reprezentują kuleczki o średnicy 2–6 mikrometrów. Pod koniec okresu laktacji średnica kuleczek ulega zmniejszeniu. Silny stopień rozproszenia (dyspersji) ilustruje fakt, że w 1 ml mleka jest od 2 do 6 miliardów kuleczek. Na powierzchni kuleczek są tzw. otoczki fosfolipidowo-białkowe. Natomiast wewnątrz jest półpłynny tłuszcz. Tłuszcz mleczny chemicznie jest tzw. tłuszczem właściwym, czyli estrem glicerolu i kwasów tłuszczowych (98%). Pozostałe 2% stanowią: cholesterol, fosfolipidy, karoteny, witaminy. Podstawowe kwasy tłuszczowe: linolowy, linolenowy i arachidonowy stanowią grupę niezbędnych nienasyconych kwasów tłuszczowych (NNKT, witamina F). W mleku krowim występuje również dużo kwasu oleinowego, który stanowi 37% zawartości tłuszczu mleka. Głównym fosfolipidem mleka jest lecytyna, która ma zdolności stabilizowania emulsji. Zawartość lecytyny: 0,02–0,035%. Cholesterol występuje z tłuszczem w stosunku 1:100. Strawność tłuszczu mlecznego jest bardzo wysoka, 97-99%. Tak wysoka strawność wynika z dużego rozproszenia kuleczek tłuszczowych w mleku, jak i również z niskiej temperatury topnienia tłuszczu (31–42 °C).


Substancje mineralne |




  • Wapń. W nieprzetworzonym mleku krowim od 1 do 1,2 g/l. Ok 2/3 całego wapnia związane jest z kazeiną w postaci dwu- i trójwapniowego fosforanu. 10% wapnia występuje w formie jonowej, a ok. 20% jako niezjonizowane węglany, fosforany i cytryniany.


  • Fosfor. W mleku krowim 0,093-0,096%. W postaci fosforanów wapnia, magnezu i potasu. Związany jest także estrowo z kazeiną, tłuszczami i cukrowcami.


  • Potas. Występuje głównie w postaci wolnych jonów. Zawartość waha się w granicach 1,35-1,55 g/l. Zawartość potasu zależna jest od zawartości sodu. Im mniej sodu, tym więcej potasu.


  • Chlor, Sód. Występują w mleku jako wolne jony, ale w ścisłym powiązaniu z jonami wapnia i potasu. Zasadnicza rola chloru i sodu polega na utrzymaniu odpowiedniego ciśnienia osmotycznego mleka (wspomaga ono również laktozę).


  • Magnez. Występuje w mleku zarówno w postaci związków rozpuszczonych (73-75% ogólnej ilości), jak i w postaci koloidalnej – fosforanów i cytrynianów. Tylko niewielka ilość magnezu (15%) występuje jako wolne jony. Magnez wpływa na stabilność termiczną mleka.


  • Kwas cytrynowy. Świeże mleko ma go od 0,16 do 0,2%. Jest on syntetyzowany w gruczole mlekowym; spełnia rolę czynnika buforującego. W 90% tworzy rozpuszczalne sole wapnia, magnezu i potasu.



Witaminy |




  • Witamina A. Wytwarzana przez organizm krowy z karotenu pobieranego z paszą. Następnie z krwią transportowana jest do gruczołu mlecznego. Witamina A gromadzona jest głównie w tłuszczu mleka; zawiera on 0,002% witaminy A i 0,0001% karotenu.


  • Witamina D. Powstaje w organizmie zwierzęcia lub bezpośrednio w mleku, a nawet w paszy: ze steroli pod wpływem promieni UV. W mleku obecny jest cholesterol w ilości 0,012% i w witaminę D może się on przekształcać przez naświetlenie mleka lub po spożyciu.


  • Witamina E (tokoferol). Jej źródłem jest pasza zadawana krowie. Dlatego w sezonie pastwiskowym mleko jest bogatsze w witaminę E niż w sezonie zimowym.


  • Witaminy z grupy B. Są wytwarzane przez mikroflorę (drobnoustroje) w żwaczu i jelitach.


pH świeżego mleka powinno mieścić się w przedziale 6,5-6,7.



Porównanie mleka kobiecego i nieprzetworzonego mleka krowiego |

























































Substancja
Mleko kobiece
Mleko krowie
Literatura

Białko

Albumina (1,0 - 1,6 g/100 ml)

Kazeina (3,3 - 4,3 g/100 ml)
[3]

Tłuszcze

Kwasy nienasycone (3,3-4,4 g/100 ml)

Kwasy nienasycone (3,9-5,7 g/100 ml)
[3]
Cukier laktoza
6,8-7,0 g/100 ml
4,5-4,9 g/100 ml
[3]

Fosfor
4,84 mmol/l
30,7 mmol/l


Wapń
8,23 mmol/l
30,11 mmol/l

Ilość kcal/100 ml
71 kcal
61-66 kcal


pH
7,2
6,6


Sucha masa
11,5-12,5g/100 ml
12,6-15,4g/100 ml
[3]





























































































































Średni skład mleka u różnych ssaków (g/100 ml)
Gatunek

Tłuszcz

Białko

Laktoza
Słoń 22,1 3,2 7,4
Szympans 3,7 1,2 7,0
Człowiek 4,0 1,3 6,5
Koń 1,6 2,7 6,2
Owca 9,0 4,7 5,8
Zebra 4,8 3,0 5,3
Wielbłąd 5,4 3,8 5,1
Świnia 5,0 3,7 5,0
Kot 5,0 7,2 4,9
Krowa 3,7 3,3 4,8
Kangur 4,0 3,9 4,7
Koza 4,1 3,7 4,2
Pies 11,8 8,7 3,3
Szczur 12,0 9,2 3,3
Niedźwiedź polarny 9,5 9,6 3,0
Szara foka 53,2 11,2 2,6
Bóbr 19,8 9,0 2,2
Królik 10,5 15,5 2,0
Delfin 34,9 10,6 0,9

Oparte na: D. Miller Ben Shaul, Skład mleka dzikich zwierząt.


Skład mleka różnych gatunków zwierząt dość znacznie się różni – mleko krowie ma ok. 4% tłuszczu, a renifera 22%. W mniejszym stopniu występują różnice między poszczególnymi rasami i osobnikami. Mleko niektórych ssaków nie nadaje się do bezpośredniej konsumpcji przez człowieka. Na przykład mleko fok i wielorybów zawiera 12 razy więcej tłuszczu, a także więcej białka niż mleko krowie, natomiast prawie nie zawiera węglowodanów. Istotnym składnikiem mleka jest również laktoza – dwucukier nadający mleku charakterystyczny słodkawy posmak[4].



Skażenia mikrobiologiczne mleka |


Powodem obecności bakterii patogennych są: choroba zwierzęcia, kontakt zwierzęcia z chorym człowiekiem, brak higieny doju i przetrzymywania mleka.




  • Rodzaj Salmonella. Obejmuje dwa gatunki bakterii z ponad 2 500 serotypów, z których nie wszystkie są chorobotwórcze dla człowieka. Nosicielem jest człowiek i zwierzęta gospodarskie, głównie kury, kaczki, świnie, a także gryzonie. Źródłem skażenia mogą być też ścieki komunalne, skażony nawóz, owady. Pałeczki Salmonella rosną w zakresie temperatur 5–46 °C i pH 6,6-8,2. Giną podczas pasteryzacji. Serotypy szczególnie chorobotwórcze dla ludzi powodują ciężkie schorzenia, np. dur brzuszny (Salmonella typhi), dur rzekomy (Salmonella paratyphi). Wyróżnia się także serotypy pałeczek Salmonella tzw. odzwierzęce: Salmonella enteritidis i Salmonella typhimurium. Wywołują one zatrucia pokarmowe tzw. salmonellozy, zwłaszcza po spożyciu żywności: mleko surowe, jaja, mięso. Czas inkubacji wynosi 6–8 godzin, a nawet do 72 godzin.


  • Rodzaj Staphylococcus. Gronkowce z tego rodzaju występują na powierzchni ciała człowieka i zwierząt; u krów szczególnie na błonach śluzowych i przewodach strzykowych. Można je spotkać w glebie i wodzie. Rosną w zakresie temperatur 15–46 °C i pH 4,2-9,3. Chorobotwórczy gatunek Staphylococcus aureus (gronkowiec złocisty) wywołuje ropnie skóry, zapalenie migdałków podniebiennych (angina), zatrucia pokarmowe, a u krów zapalenia wymienia. Zatrucie pokarmowe u ludzi przypisuje się spożyciu żywności zakażonej gronkowcem wytwarzającym toksyny odporne na działanie enzymów i kwasu żołądkowego. W ciągu kilku godzin od spożycia występują: biegunki, wymioty, które ustępują po wydaleniu z organizmu pokarmu zawierającego toksyny. Objawy zatrucia występują po spożyciu pokarmu zawierającego od 105 do 106 komórek gronkowca na 1 g produktu. Ciepłoodporność toksyn jest wysoka; wytrzymują ogrzewanie 100 °C przez 20 minut. W przypadku silnego skażenia mleka temperatura pasteryzacji nie likwiduje zagrożenia gronkowcem.


  • Rodzaj Shigella. Głównym źródłem zakażenia produktów jest chory człowiek. Osoby, które przebyły chorobę, mogą być nadal nosicielami bakterii. Potocznie zatrucie shigellą nazywa się "chorobą brudnych rąk", inaczej czerwonką bakteryjną. Objawia się gorączką, krwawą biegunką, szczególnie niebezpieczną dla małych dzieci. Bakterie uszkadzają nabłonek jelit i produkują toksyny, które przenikają do krwi, śluzów i kału. Shigella jest bardzo zakaźna; objawy choroby wywołuje od 10 do 100 komórek. Bakterie rosną najlepiej w temperaturze 10–40 °C. Dobrze znoszą niższe temperatury. Giną w temperaturze 56 °C. Czas inkubacji choroby to 1–7 dni.


  • Rodzaj Listeria. Obejmuje gatunki chorobotwórcze, jak i niechorobotwórcze. Do chorobotwórczych zalicza się Listeria monocytogenes. Rośnie w temperaturze 0–45 °C. Optymalna kwasowość pH 5-9. Źródłem chorobotwórczych są zwierzęta: psy, krowy, owce, świnie, owady. Dawka zakaźna: 100–1 000 żywych komórek bakterii. Trzeba zaznaczyć, że nawet niższe dawki mogą się namnażać w organizmie i później wywołać posocznicę. Mogą również oddziaływać na mózg i serce, a także przenikać do płodu. W przypadku epidemii wskaźnik śmiertelności wynosi 30%. Czas inkubacji: 2 dni do 3 tygodni. Najczęściej występuje w: mleku, serach twarogowych, mięsie, owocach, warzywach. Listeria są ciepłoodporne; przeżywają 80 °C przez 5 minut i mogą namnażać się w warunkach chłodniczych.


  • Rodzaj Yersinia. Obejmuje pałeczki rosnące bardzo dobrze w niskich temperaturach, nawet ujemnych. Są to tzw. psychotrofy. Źródłem zakażenia może być zwierzę domowe: kot, pies, świnia, a także szczury. Zachorowanie na jersiniozę występuje po spożyciu żywności zawierającej 108-109 komórek. Najczęściej zakażona jest żywność: surowe mleko, lody, sery twarogowe, mięso. Yersinia rozwija się i namnaża na błonie śluzowej jelit przez 5–10 dni. Prowadzi to do zmian zapalnych jelit, owrzodzeń, gorączki, wymiotów i bólów brzucha przypominających zapalenie wyrostka. U osób dorosłych może powodować zapalenie stawów i dróg moczowych.


  • Rodzaj Campylobacter. Dominuje u bydła, zwłaszcza w jego układzie pokarmowym. Bakterie rosną w temperaturze 37–47 °C. Są wrażliwe na pasteryzację, a także na niską kwasowość. Do wywołania zakażenia konieczne jest spożycie surowych produktów pochodzenia zwierzęcego zawierających 104 bakterii. Campylobacter jejuni jest powszechnym patogenem człowieka. Wywołuje zapalenie jelit przez wytwarzanie toksyn: zaburzenia gastryczne występują po 2–5 dniach od spożycia; bardzo wysoka gorączka 40 °C, ból głowy, ostra biegunka.


  • Rodzaj Escherichia. Pałeczki są wrażliwe na niskie temperatury, jak i na ogrzewanie i temperatury powyżej 60 °C. Optymalna temperatura wzrostu to 37 °C, pH 4,2-9. W grupie Escherichia wyróżnia się enteropatogenne typy Escherichia coli, przyczyniające się do ciężkich biegunek wywołujących silne odwodnienie organizmu. Są też przyczyną tzw. biegunek podróżnych. Escherichia coli rośnie w jelitach, produkuje toksyny. Źródłem zakażenia jest mleko surowe, jaja, sałatki warzywne, ser biały. Escherichia może się namnażać w żywności niewłaściwie przechowywanej.


  • Wirusy. Żywność może być zakażona wtórnie lub pierwotnie i wtórnie przez zwierzęta. Zasadniczą rolę odgrywają tzw. enterowirusy.


    • Echo – to wirus zapalenia opon mózgowych.


    • Poliomyelitis – choroba Heinego-Medina.


    • Coxsackie – zapalenie opon mózgowych, zapalenie dróg oddechowych.


    • Wirus zapalenia wątroby typu A (WZW) – przedostaje się drogą pokarmową; jest odporny na działanie czynników zewnętrznych.





Naturalne składniki mleka jako czynniki chorobotwórcze |




  • Alergie na białka mleka. Występują najczęściej u dzieci i zanikają najpóźniej do 3 roku życia. Także może występować u osób ciężko chorych, będąc zwykle wynikiem stanów zapalnych żołądka i jelit. Przyczyną może być:

    • β-lakto-globulina, nieobecna w mleku ludzkim

    • kazeina – czynnikiem alergicznym jest frakcja α. Alergia ta ustępuje przy zamianie mleka krowiego na kozie

    • α-lakto-albumina i albuminy surowicy krwi – najczęstsze objawy alergii na nie to wysypki, pokrzywka, biegunki, kaszel; może doprowadzić do astmy




  • Nietolerancja laktozy. Wynika z braku lub niedoboru w organizmie dorosłego człowieka enzymu laktazy.



 Osobny artykuł: Nietolerancja laktozy.


  • Wyróżnia się nietolerancję:

    • wrodzoną – dziecko nie posiada zdolności wytwarzania enzymu laktazy

    • pierwotną – występującą w niektórych populacjach ludzkich (np. zamieszkałych w części Afryki, w Chinach, a także u aborygenów) – w tych populacjach produkcja laktazy jest wyłączana z wiekiem tak samo, jak dzieje się to u większości ssaków. Również u osób dorosłych, które przez kilka lat nie spożywały mleka, obserwuje się obniżenie aktywności laktazy.

    • wtórną – będącą wynikiem stanów zapalnych żołądka, jelit, zabiegów chirurgicznych lub długotrwałej diety bezmlecznej. Prowadzi do całkowitego zaniku enzymu.




  • Nietolerancja galaktozy. Zdarza się u dzieci z niedoborem enzymu lub kilku enzymów katalizujących. Galaktoza normalnie jest wychwytywana przez wątrobę i włączana w cykl przemian wewnątrzkomórkowych. Przy braku enzymów gromadzi się w moczu i prowadzi do schorzenia, tzw. galaktozemii. Ujawnia się to zaraz po urodzeniu objawiając się biegunką, wymiotami. U chorych dzieci eliminuje się z diety produkty z galaktozą, gdyż mogą zahamować wzrost i silnie zahamować rozwój umysłowy dziecka.



Enzymy rodzime mleka |



  • Lipazy. Powodują syntezę tłuszczu w gruczole mlecznym, a później w mleku po udoju odszczepiają od glicerydów krótkie kwasy tłuszczowe. Powoduje to w mleku i jego przetworach, szczególnie schłodzonych, jełki smak i zapach. W mleku lipazy związane są głównie z kazeiną. Rozróżniamy 2 rodzaje lipolizy:


    • lipoliza spontaniczna, występująca najczęściej w mleku otrzymanym pod koniec laktacji lub krótko po wycieleniu. Ujawnia się bardzo szybko po doju, a do jej zaistnienia wystarcza schłodzenie mleka do temperatury niższej niż 15 °C. Mleko wykazujące ten rodzaj lipolizy określa się jako podatne naturalnie.


    • lipoliza indukowana, związana jest z przepompowaniem mleka, energicznym mieszaniem, spienieniem i zmianami temperatury.



Oba rodzaje lipoliz są hamowane przez światło słoneczne, metale: miedź i żelazo oraz temperaturę 80 °C przez 20 sekund.




  • Proteaza. Powoduje rozpad białek. Enzym związany jest z kazeiną. Przechodzi do skrzepu mleka. Może przyczyniać się do rozpadu białek w czasie dojrzewania serów podpuszczkowych. Ulega inaktywacji w temperaturze 90 °C w czasie 1 do 5 minut.


  • Fosfataza alkaliczna. Hydrolizuje estry kwasu fosforowego. Do 40% tego enzymu związane jest z kuleczkami tłuszczowymi. Aktywatorami fosfatazy alkalicznej są jony manganu i miedzi. Unieczynnia ją niska pasteryzacja, tj. 72 °C przez 15 sekund.


  • Fosfataza kwaśna. Część tego enzymu związana jest z kuleczkami tłuszczowymi, a część (70%) znajduje się w fazie wodnej mleka. Odszczepia fosfor od kazeiny, dlatego też może powodować rozpad miceli kazeinowych i tworzenie luźnego skrzepu. Jest enzymem wyjątkowo ciepłoodpornym. Podczas pasteryzacji wysokiej 95 °C przez 15 sekund ulega inaktywacji tylko 65% tego enzymu. Wykazano również obecność tej fosfatazy w mleku sterylizowanym, czyli 135 °C przez 1 sekundę.


  • Lizozym. Mleko krowie zawiera go 0,13 mg/l. Powoduje uszkodzenie ścian komórkowych bakterii gram-dodatnich. Wykazuje działanie bakteriostatyczne. Dużo tego enzymu zawierają leukocyty[potrzebny przypis]. Wytrzymuje ogrzewanie 100 °C, dlatego zawsze jest obecny w mleku pasteryzowanym.


  • Oksydaza ksantynowa. Jest enzymem katalizującym utlenianie związków aldehydów, puryn i ksantyn. Znajduje się w kuleczkach tłuszczowych. Ilość w mleku krowim to 160 mg/l. Ulega całkowitej inaktywacji w temperaturze 95 °C przez 15 sekund.


  • Katalaza. W mleku normalnym jest jej bardzo mało. Większe ilości znajdują się w mleku mastitisowym. Katalaza rozkłada nadtlenek wodoru na H2O i O2. Unieczynnia ją pasteryzacja wysoka.


  • Peroksydazy. Katalizują utlenianie amin, fenoli i kwasu askorbinowego. Występują w połączeniu z białkami serwatkowymi w ilości od 30 do 100 mg/l. Wykazują dużą ciepłoodporność. Ulegają inaktywacji w temperaturze 100 °C.



Mleko w tradycji i kulturze |




Mleczarka, Jan Piotr Norblin, 1817




Mleczarka, Jan Vermeer, ok. 1660


W niektórych kulturach (w Chinach, Japonii i wyspach Polinezji) mleko nie jest spożywane. Wynika to z faktu, że mleko jest przez wielu ludzi, szczególnie w Azji całkowicie nieprzyswajalne. Na Bliskim Wschodzie mleka unikają Arabowie, w Afryce zaś m.in. mieszkańcy Nigerii Południowej.


U niektórych ludów mleko miało znaczenie ceremonialne i było składane bogom i duchom w ofierze. Taka tradycja istniała i u dawnych Słowian, a jej pozostałością był zwyczaj pozostawiania na talerzyku odrobiny mleka dla duszków opiekuńczych.


Mleko stanowi podstawowy produkt do wyrobu różnych napojów mlecznych i serów. W Mongolii z kobylego mleka produkuje się napój alkoholowy – kumys. Mleko także może być poddane zagęszczaniu, odtłuszczaniu i odwadnianiu (mleko w proszku). Sądzi się, że umiejętność zagęszczania mleka opanowali już w XIII wieku Mongołowie.



Wykorzystanie mleka zwierząt domowych przez ludzi |


Z powodu nietolerancji laktozy początkowo w historii ludzkości mleko wykorzystywano tylko do wytwarzania produktów zawierających mało laktozy takich jak masło, jogurt, sery. Przypuszcza się, że mutacja umożliwiająca trawienie laktozy i picie mleka (allel LP) pojawiła się około 7,5 tys. lat temu na Węgrzech. Mutacja ta była jedną z najkorzystniejszych i znacznie zwiększyła przewagę rolników, którzy wygrali konkurencję z ludami zbieracko-łowieckimi Europy Środkowej i Północnej. W Skandynawii i Wielkiej Brytanii laktozy nie toleruje kilka procent ludności, w Grecji i Turcji ponad 70%. Różnicę tłumaczy się tym, że tereny te były już zasiedlone przez rolników zanim pojawili się zmutowani rolnicy[5].


Mimo że przez wiele lat stosowano mleko krowie oraz sztucznie przygotowywane preparaty mleczne, najbardziej wartościowym i właściwym pokarmem dla niemowląt jest mleko ludzkie.


Najczęściej wykorzystywane przez człowieka jako produkt spożywczy jest mleko krowie. Jednak w niektórych krajach przeważa użycie mleka innych gatunków zwierząt domowych.


Do wykorzystania kulinarnego w tej czy innej postaci nadaje się zasadniczo mleko wszystkich gatunków ssaków. O faktycznym wykorzystaniu decydują przyzwyczajenia oraz względy praktyczne i zootechniczne (odpowiednio długi okres laktacji, łatwość hodowli, ilość otrzymywanego mleka).


W praktyce ludzie korzystają z mleka:



  • bydła domowego


  • kóz (częściej do produkcji serów)


  • owiec (w Polsce głównie do produkcji serów regionalnych)


  • bawołów (Włochy – głównie do produkcji mozzarelli, Indie)


Bardzo ograniczone regionalnie jest wykorzystanie mleka:



  • koni

  • wielbłądów

  • reniferów

  • jaków

  • lam


Historycznie jest dość dobrze udokumentowane wykorzystanie mleka osłów.


Mleko bawole spożywa się w Indiach, a także we Włoszech, na Węgrzech, na Bałkanach i znacznej części krajów azjatyckich. Mleko owcze pija się w znaczniejszych ilościach w Hiszpanii, a przeznacza się je do wyrobu serów także we Francji i w Polsce (na Podhalu); mleko kozie w basenie Morza Śródziemnego; wielbłądzie w niektórych krajach arabskich oraz kobyle w Mongolii. Lapończycy używają mleka reniferów, Peruwiańczycy - lamy, a ludność Tybetu - jaków.


Według prawodawstwa Unii Europejskiej mleko innych zwierząt domowych niż bydło nie może być określane jako mleko, lecz musi zawierać informację o zwierzęciu gospodarskim (na przykład mleko kozie).



Odniesienia historyczne |


Pas gwiazd i mgławic układający się w poprzek nieba przypominał starożytnym Grekom rozlane na niebie mleko. Stąd wzięły się nazwy „Droga Mleczna” i „galaktyka” – greckie słowo galaktikos oznacza „mleczny”, a nazwa naszej Galaktyki pochodzi od łacińskiego tłumaczenia tego terminu.


W Cesarstwie Bizantyńskim mleko było przede wszystkim napojem ludzi zamożnych – wyłącznie oni (oraz sami rolnicy) mogli sobie pozwolić na kosztowny transport szybko psującego się produktu[potrzebny przypis].



Lista największych producentów mleka krowiego |


































































Najwięksi producenci mleka krowiego w 2010[6]:
Państwo
Produkcja (w tonach)
Uwagi

 Stany Zjednoczone
87 461 300

 Indie
50 300 000 nieoficjalnie

 Chiny
36 022 650

 Rosja
31 895 100

 Brazylia
31 667 600

 Niemcy
23 301 200

 Francja
17 010 500

 Wielka Brytania
13 960 000

 Turcja
12 480 100

 Pakistan
12 437 000
cały świat
599 615 097



Lista największych konsumentów mleka krowiego i produktów mlecznych[7] |








































































Najwięksi konsumenci mleka krowiego i produktów mlecznych w 2006:
Państwo Mleko (litry) Ser (kg) Masło (kg)

 Finlandia
183,9 19,1 5,3

 Szwecja
145,5 18,5 1,0

 Irlandia
129,8 10,5 2,9

 Holandia
122,9 20,4 3,3

 Norwegia
116,7 16,0 4,3

 Hiszpania
119,1 9,6 1,0

 Szwajcaria
112,5 22,2 5,6

 Wielka Brytania
111,2 12,2 3,7

 Australia
106,3 11,7 3,7

 Kanada
94,7 12,2 3,3


Regulacje |


Decyzją Trybunału Unii Europejskiej z 2017 roku termin "mleko" co do zasady zarezerwowany jest wyłącznie dla mleka zwierzęcego, podobnie jest w wypadku przetworów nazywanych jako: ser, śmietanka, chantilly, masło i jogurt[8].



Przypisy |




  1. Lis J, Orczyk-Pawiłowicz M, Kątnik-Prastowska I. Białka mleka ludzkiego zaangażowane w procesy immunologiczne. „Post.Hig.Med.Dośw.(online)”. 67, s. 529-547, 2013. 


  2. Cichocki, Kompendium histologii.


  3. abcd Sylwia Igras. Charakterystyka mleka różnych gatunków zwierząt i człowieka. „Journal of NutriLife”. 02, 2012.02.26. ISSN 2300-8938 (pol.). [dostęp 2012-12-18]. 


  4. Analiza mleka zwierząt i metody chowu. International Zoo Yearbook, 1959.


  5. Archaeology: The milk revolution Nature News & Comment. Opracowanie po polsku tego artykułu: Tylko jedna trzecia ludzkości pije mleko Gazeta Wyborcza


  6. Oficjalny raport FAO


  7. Raport na Foodsci.ca


  8. Komunikat prasowy nr 63/17. Wyrok w sprawie C-422/16 Verband Sozialer Wettbewerb eV / TofuTown.com GmbH (pol.). strona sekcji Kontakty z Mediami i Informacja Trybunału Sprawiedliwości Unii Europejskiej, 14 czerwca 2017. [dostęp 2019-02-14].



Zobacz też |

















  • koagulacja mleka

  • mleczko kauczukowe

  • mleczarstwo

  • mleko wielbłądzie

  • mleczko pszczele


  • mleko ryżowe, mleko sojowe, mleko migdałowe, mleko kokosowe – roślinne zamienniki mleka zwierzęcego

  • ptasie mleczko (ornitologia)

  • pasteryzacja

  • UHT



Przypisy |




Linki zewnętrzne |



  • "Mleko i wapń" informacje z harvard.edu (ang.)







Popular posts from this blog

浄心駅

カンタス航空