Planck-Weltraumteleskop

























































Planck

Planck
Typ:
Weltraumteleskop
Betreiber:
Europäische WeltraumorganisationESA ESA

COSPAR-Bezeichnung:
2009-026B
Missionsdaten
Masse: 1921 kg (Startmasse)/ 28 kg Teleskopmasse
Größe: Höhe 4,2 m, Durchmesser max. 4,2 m
Start: 14. Mai 2009, 13:12:02 UTC
Startplatz:
CSG, ELA-3
Trägerrakete:
Ariane 5 ECA
Flugdauer: 4 Jahre, 5 Monate und 9 Tage
Status: außer Betrieb seit 23. Oktober 2013
Bahndaten
Bahnhöhe: 1,5 Millionen km

Apogäum:
Lissajous-Bahn um den Lagrange-Punkt L2 des Erde-Sonne-Systems

Planck (auch Planck Surveyor genannt) war ein Mikrowellen-Weltraumteleskop der ESA zur Erforschung der kosmischen Hintergrundstrahlung.




Inhaltsverzeichnis






  • 1 Mission


  • 2 Nutzlast


    • 2.1 Low Frequency Instrument


    • 2.2 High Frequency Instrument




  • 3 Technische Daten


  • 4 Wissenschaftliche Arbeit


    • 4.1 Geschichte


    • 4.2 Messung und Auswertung


    • 4.3 Ergebnisse


    • 4.4 Kosmologische Parameter der Planck-Messungen




  • 5 Literatur


  • 6 Weblinks


  • 7 Anmerkung


  • 8 Einzelnachweise





Mission |


Das 1921 kg schwere Planck-Teleskop[1] wurde zusammen mit dem Infrarotteleskop Herschel durch eine Ariane 5 ECA in den Weltraum gebracht. Der Start erfolgte nach mehrmaliger Verschiebung am 14. Mai 2009 um 13:12 Uhr UTC vom Centre Spatial Guyanais bei Kourou.[2] Nach dem Brennschluss der Oberstufe wurden der Planck-Satellit um 13:40 UTC wenige Minuten nach dem Herschel-Teleskop auf einer hochelliptischen Erdumlaufbahn zwischen 270 und 1.197.080 km Höhe, die 5,99° zum Äquator geneigt ist, ausgesetzt. Von dieser Umlaufbahn erreichte der Satellit nach mehreren Bahnmanövern seine Lissajous-Bahn um den Lagrange Punkt L2 des Erde-Sonne-Systems.


Am 14. August 2013 wurde das Teleskop nach 1554 Tagen Betrieb vom L2-Punkt abgezogen und in eine heliozentrische Bahn gebracht, die sicherstellt, dass es für die nächsten 300 Jahre nicht durch die Erde eingefangen wird.[3] Am 23. Oktober 2013 wurde Planck endgültig abgeschaltet.[4]



Nutzlast |




Das Low Frequency Instrument (LFI)




Das High Frequency Instrument (HFI)


Zur Beobachtung der Strahlung besitzt der Satellit zwei verschiedene Instrumente, das „High Frequency Instrument“ (HFI) für den höheren und das „Low Frequency Instrument“ (LFI) für den niedrigeren Frequenzbereich.[5] Diese Instrumente bilden mit den beiden Spiegeln des Satelliten ein Teleskop, das auf einer Kohlenfaserstruktur aufgebaut ist.


Unterhalb des Teleskops befindet sich die im Wesentlichen aus drei Aluminiumsandwichschilden und Glasfaserstützen bestehende Kryostruktur („Cryo Structure“). Sie dient der Optimierung der Wärmeabstrahlung und dem Schutz des Teleskops vor dem warmen Satellitenkörper. Passiv wird so eine Temperatur von etwa 45 K erreicht. Das LFI wird mit einem Sorptionskühler in einem geschlossenen Wasserstoff-Kreislauf auf 20 K gekühlt. Das HFI wird zusätzlich durch einen geschlossenen Helium-Kreislauf auf 4 K gekühlt. Durch Mischung von flüssigem Helium-4 und Helium-3 werden schließlich die Detektoren des HFI auf nur 0,1 K gekühlt, um das Rauschen zu unterdrücken. Dieser Kühlmechanismus des kältesten Teils von Planck ist offen, d. h. das Kühlmittel geht mit der Zeit verloren.



Low Frequency Instrument |































Frequenz
(GHz)
Bandbreite
(Δν/ν)
Auflösung
(arcmin)
Empfindlichkeit (Gesamtintensität)
ΔT/T, 14 Monate Beobachtung
(10−6)
Empfindlichkeit (Polarisation)
ΔT/T, 14 Monate Beobachtung
(10−6)
30 0,2 33 2,0 2,8
44 0,2 24 2,7 3,9
70 0,2 14 4,7 6,7


High Frequency Instrument |




















































Frequenz
(GHz)
Bandbreite
(Δν/ν)
Auflösung
(arcmin)
Empfindlichkeit (Gesamtintensität)
ΔT/T, 14 Monate Beobachtung
(10−6)
Empfindlichkeit (Polarisation)
ΔT/T, 14 Monate Beobachtung
(10−6)
100 0,33 10 2,5 4,0
143 0,33 7,1 2,2 4,2
217 0,33 5,5 4,8 9,8
353 0,33 5,0 14,7 29,8
545 0,33 5,0 147
857 0,33 5,0 6700


Technische Daten |



  • Höhe: 4,2 m

  • Durchmesser: max. 4,2 m

  • Startmasse: 1,921 t

  • Hauptspiegeldurchmesser: 1,75 m

  • Teleskopmasse: 28 kg

  • Kühlflüssigkeit: 1500 l Helium

  • Einsatzdauer: 21 Monate (geplant), 29 Monate erreicht (HFI), Teilbetrieb während weiterer 7 Monate

  • Bahn: Lissajous-Bahn, 0,28 Mio. km × 0,28 Mio. km um L2 Erde-Sonne, jetzt Sonnenumlaufbahn

  • Gesamtkosten: 600 Mio. Euro



Wissenschaftliche Arbeit |



Geschichte |












Materie- bzw. Energie-Anteil des Universums zum jetzigen Zeitpunkt (oben) und zur Entkopplungszeit (unten), 380.000 Jahre nach dem Urknall. (Beobachtungen der WMAP-Mission links, die aktuellere des Planck rechts) [Anmerkung 1]. Die Bezeichnung „Atome“ steht für „normale Materie“.


Materie- bzw. Energie-Anteil des Universums zum jetzigen Zeitpunkt (oben) und zur Entkopplungszeit (unten), 380.000 Jahre nach dem Urknall. (Beobachtungen der WMAP-Mission links, die aktuellere des Planck rechts) [Anmerkung 1]. Die Bezeichnung „Atome“ steht für „normale Materie“.

Materie- bzw. Energie-Anteil des Universums zum jetzigen Zeitpunkt (oben) und zur Entkopplungszeit (unten), 380.000 Jahre nach dem Urknall. (Beobachtungen der WMAP-Mission links, die aktuellere des Planck rechts) [Anmerkung 1]. Die Bezeichnung „Atome“ steht für „normale Materie“.




Das Projekt eines Satelliten zur genauen Untersuchung der kosmischen Hintergrundstrahlung wurde 1996 begründet und entstand in Zusammenarbeit von 40 europäischen und 10 amerikanischen Instituten mit der ESA.[6] Der Satellit soll Temperaturfluktuationen der Hintergrundstrahlung im Bereich von einem Millionstel Grad ermitteln. Er wurde ursprünglich unter dem Namen COBRAS/SAMBA evaluiert und später zu Ehren Max Plancks umbenannt.



Messung und Auswertung |


Am 13. August 2009 wurde mit der regelmäßigen Beobachtung begonnen. Die erste vollständige Aufnahme des Himmels wurde Juni 2010 fertiggestellt, um jedoch die volle Genauigkeit zu erreichen, war eine Nachbearbeitung nötig. Erste Ergebnisse wurden im Januar 2011 veröffentlicht.[7] Das für die Kühlung des HFI notwendige Kühlmittel ging am 16. Januar 2012 zu Ende, das LFI kann noch für Monate weiter betrieben werden, was insbesondere bessere Kalibrierung der Hochfrequenzdaten ermöglicht. Anstatt der vorgesehenen zwei schaffte Planck sogar fünf komplette Himmelsdurchmusterungen. Die Auswertung der Daten wird Schätzungen Beteiligter zufolge mindestens ein Jahr dauern.[8][9]


Ziel von Planck ist eine Kartierung der kosmischen Hintergrundstrahlung parallel bei neun Frequenzen zwischen 30 und 857 GHz. Die Winkelauflösung von Planck ist mit Werten zwischen 4 Bogenminuten für die höchsten und 33 Bogenminuten für die niedrigsten Frequenzen[5] wesentlich besser als bei den vergleichbaren früheren Projekten COBE und WMAP.


Gleichzeitig werden Beobachtungen der Vordergrundstrahlung der Milchstraße und Galaxien gewonnen. Diese Störeffekte müssen zum einen zur Ermittlung der Hintergrundstrahlung sehr gut bekannt sein, sind aber auch von eigenem wissenschaftlichem Interesse z. B. zum tieferen Verständnis der Sternentwicklung.


Nach Simulationen von Gary Shiu und Bret Underwood von der University of Wisconsin–Madison könnten die Messungen des Planck-Satelliten geeignet sein, die Stringtheorie zu überprüfen.[10]



Ergebnisse |




Vergleich der Ergebnisse der Messungen der Hintergrundstrahlung von COBE, WMAP und Planck


Das erste wissenschaftliche Ergebnis war der Early-Release Compact-Source Catalogue, der im Januar 2011 während der Planck Konferenz in Paris vorgestellt wurde.[11][12]


Am 21. März 2013 wurden die ersten Ergebnisse der Planck-Kollaboration in 24 Veröffentlichungen zeitgleich publiziert.[13]
Demnach ist z. B. das Alter des Weltalls geringfügig von 13,7 Milliarden Jahren auf 13,82 Milliarden Jahre erhöht. Auch die neuen Angaben zur Zusammensetzung des Weltalls (Dunkle Materie usw.) wurden quantitativ geändert. Auffällig ist aber eine geringe Asymmetrie der Materieverteilung.[14]


Am 5. Mai 2014 wurde eine Karte des galaktischen Magnetfelds veröffentlicht.[15]




Kosmologische Parameter der Planck-Messungen |


Die Kosmologische Parameter der Messungen des Teleskopes sind in der Tabelle dargestellt.





























































































































































Parameter
Alter des Universums (Mrd. Jahre)

Hubble-Konstante
( km/(Mpc·s) )

Baryonen-Dichte
Dichte Kalte Dunkle Materie
Dichte Dunkle Energie
Dichteschwankung bei 8h−1 Mpc Skalarer Spektralindex
Reionisation Optische Tiefe
Symbol t0{displaystyle t_{0}}t_{0} H0{displaystyle H_{0}}H_{0} Ωbh2{displaystyle Omega _{b}h^{2}}Omega _{b}h^{2} Ωch2{displaystyle Omega _{c}h^{2}}Omega _{c}h^{2} ΩΛ{displaystyle Omega _{Lambda }}Omega _{Lambda } σ8{displaystyle sigma _{8}}sigma _{8} ns{displaystyle n_{s}}n_{s}
τ{displaystyle tau }tau
Planck
Best fit
13,819 67,11 0,022068 0,12029 0,6825 0,8344 0,9624 0,0925
Planck
68 % Bereich
13,813 ± 0,058 67,4 ± 1,4 0,02207 ± 0,00033 0,1196 ± 0,0031 0,686 ± 0,020 0,834 ± 0,027 0,9616 ± 0,0094 0,097 ± 0,038
Planck+lensing
Best fit
13,784 68,14 0,022242 0,11805 0,6964 0,8285 0,9675 0,0949
Planck+lensing
68 % Bereich
13,796 ± 0,058 67,9 ± 1,5 0,02217 ± 0,00033 0,1186 ± 0,0031 0,693 ± 0,019 0,823 ± 0,018 0,9635 ± 0,0094 0,089 ± 0,032
Planck+WP
Best fit
13,8242 67,04 0,022032 0,12038 0,6817 0,8347 0,9619 0,0925
Planck+WP
68 % Bereich
13,817 ± 0,048 67,3 ± 1,2 0,02205 ± 0,00028 0,1199 ± 0,0027 0,685 +0,018/-0,016 0,829 ± 0,012 0,9603 ± 0,0073 0,089 +0,012/-0,014
Planck+WP
+HighL
Best fit
13,8170 67,15 0,022069 0,12025 0,6830 0,8322 0,9582 0,0927
Planck+WP
+HighL
68 % Bereich
13,813 ± 0,047 67,3 ± 1,2 0,02207 ± 0,00027 0,1198 ± 0,0026 0,685 +0,017/-0,016 0,828 ± 0,012 0,9585 ± 0,0070 0,091 +0,013/-0,014
Planck+lensing
+WP+highL
Best fit
13,7914 67,94 0,022199 0,11847 0,6939 0,8271 0,9624 0,0943
Planck+lensing
+WP+highL
68 % Bereich
13,794 ± 0,044 67,9 ± 1,0 0,02218 ± 0,00026 0,1186 ± 0,0022 0,693 ± 0,013 0,8233 ± 0,0097 0,9614 ± 0,0063 0,090 +0,013/-0,014
Planck+WP
+highL+BAO
Best fit
13,7965 67,77 0,022161 0,11889 0,6914 0,8288 0,9611 0,0952
Planck+WP
+highL+BAO
68 % Bereich
13,798 ± 0,037 67,80 ± 0,77 0,02214 ± 0,00024 0,1187 ± 0,0017 0,692 ± 0,010 0,826 ± 0,012 0,9608 ± 0,0054 0,092 ± 0,013

Quellen:
[16][17][18][19][16][20][21]



Literatur |


  • Martin Hechler: Die Bahnen der Weltraumteleskope Herschel und Planck. In: Sterne und Weltraum. Heidelberg 47.2008, Nr. 1 (Jan.), S. 48–55. ISSN 0039-1263


Weblinks |



 Commons: Planck-Weltraumteleskop – Sammlung von Bildern, Videos und Audiodateien



  • Planck – ESA (englisch)


  • Planck – ESA Science & Technology (englisch)


  • Planck Science Team Home. ESA; abgerufen am 10. Februar 2018 (englisch). 


  • Planck beim Max-Planck-Institut für Astrophysik (englisch)

  • Raumfahrer.net: Herschel und Planck: Ein Blick hinter die Kulissen

  • Bernd Leitenberger: Bernd Leitenberger: Herschel und Planck


  • Herschel-Planck Launch Kit. Archiviert vom Original am 21. Mai 2009; abgerufen am 1. Januar 1970 (PDF; 1,26 MB). 

  • SpaceDaily: Coolest Spacecraft Ever In Orbit Around L2

  • ESA Broschüre: BR-275 Planck


  • Flight 188 – Ariane 5 – Satellites: HERSCHEL & PLANCK. EADS-Astrium, archiviert vom Original am 23. Dezember 2016; abgerufen am 1. Januar 1970 (englisch). 


  • Himmelskarte der kosmischen Hintergrundstrahlung (JPEG-Datei, 13 MB)


  • Himmelskarte der Mikrowellenstrahlung: Hintergrundstrahlung und Vordergrundstrahlung (JPEG-Datei, 0,9 MB)



Anmerkung |




  1. Nach den Daten des PLANCK-Weltraumteleskops (ESA, 21. März 2013) ergeben sich im Vergleich zu WMAP leicht korrigierte Werte: Sichtbare Materie: 4,9 %, Dunkelmaterie: 26,8 %, Dunkle Energie: 68,3 %, Alter des Weltalls: 13,82 Milliarden Jahre, Planck reveals an almost perfect Universe, abgerufen am 9. Okt. 2013



Einzelnachweise |




  1. ARIANE 5 - Data relating to Flight 188 by Stéphane Leboucher


  2. ESA: Ariane 5 carrying Herschel and Planck lifts off. 14. Mai 2009, abgerufen im 14. Mai 2009. 


  3. Tweet - ESA Science vom 15. August 2013


  4. ESA: Last Command sent to ESA's Planck Space Telescope. 23. Oktober 2013, abgerufen im 23. Oktober 2013. 


  5. ab Dominik Schwarz: Vordergründige Strahlung. In: Physik Journal. Weinheim 2011, 10 (Okt.), S. 20–21. ISSN 1617-9439


  6. Dem Urknall ins Auge blicken. In: Flieger Revue. Berlin 2009,4 (Apr.), S. 61–64. ISSN 0941-889X


  7. ESA: Planck Published Papers. 8. August 2011, archiviert vom Original am 23. März 2013; abgerufen im 10. Oktober 2011. i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.sciops.esa.int 


  8. Pressemitteilung der ESA (englisch) (aufgerufen am 6. Februar 2012)


  9. Welt der Physik (aufgerufen am 6. Februar 2012)


  10. Gary Shiu, Bret Underwood: Observing the Geometry of Warped Compactification via Cosmic Inflation. in: Physical Review Letters. New York 98,2007,5 (051301). ISSN 0031-9007 doi:10.1103/PhysRevLett.98.051301


  11. 2011 Planck Conference. Abgerufen am 22. März 2013.


  12. Planck Legacy Archive. European Space Agency. Archiviert vom Original am 7. Oktober 2012. i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.sciops.esa.int Abgerufen am 16. Januar 2015.


  13. ESA: Planck Published Papers. 21. März 2013, abgerufen im 23. Dezember 2016. 


  14. Wesentliche Ergebnisse vom 21. März 2013 ( nach Spiegel.online/Wissenschaft ), abgerufen am 22. März 2013.


  15. Christopher Crockett: Milky Way's magnetic field mapped. In: Science News, 9. Mai 2014. Abgerufen am 10. Mai 2014. 


  16. ab Siehe Tabelle 9 in
    Planck Collaboration: I. Overview of products and scientific results. (eprint:1303.5062– class=astro-ph.CO) In: Planck 2013 Results Papers. 2013.



  17. Planck 2015 and 2013 Results Papers. European Space Agency, abgerufen am 23. Dezember 2016. 


  18. Planck Collaboration: XVI. Cosmological parameters. (eprint: 1303.5076 – class=astro-ph.CO) In: Planck 2013 Results Papers. 2013.


  19. Planck Mission Brings Universe Into Sharp Focus. Jet Propulsion Laboratory, 21. März 2013, abgerufen am 21. März 2013. 


  20. Planck reveals an almost perfect Universe. European Space Agency, 21. März 2013, abgerufen am 21. März 2013. 


  21. D. Overbye: Universe as an Infant: Fatter Than Expected and Kind of Lumpy. The New York Times, 21. März 2013, abgerufen am 21. März 2013. 


.mw-parser-output div.NavFrame{border:1px solid #A2A9B1;clear:both;font-size:95%;margin-top:1.5em;min-height:0;padding:2px;text-align:center}.mw-parser-output div.NavPic{float:left;padding:2px}.mw-parser-output div.NavHead{background-color:#EAECF0;font-weight:bold}.mw-parser-output div.NavFrame:after{clear:both;content:"";display:block}.mw-parser-output div.NavFrame+div.NavFrame,.mw-parser-output div.NavFrame+link+div.NavFrame{margin-top:-1px}.mw-parser-output .NavToggle{float:right;font-size:x-small}







Popular posts from this blog

Арзамасский приборостроительный завод

Zurdera

Крыжановский, Сергей Ефимович